• Profile
Close

RNA thought to spread cancer shows ability to suppress breast cancer metastasis

Newswise Oct 24, 2018

Researchers at The University of Texas MD Anderson Cancer Center have discovered that a form of RNA called metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appears to suppress breast cancer metastasis in mice, suggesting a potential new area of therapeutic investigation. The findings, published in the October 22 online issue of Nature Genetics, were surprising given that MALAT1, a long non-coding RNA (lncRNA), previously was described as a metastasis promoter.

“Our 6-year study unearthed the unexpected metastasis-suppressing function of MALAT1 through highly rigorous genetics approaches,” said Li Ma, PhD, associate professor of experimental radiation oncology and principal investigator for the study. “Our findings defy the conclusions drawn from previous MALAT1 studies and suggest the potential value of therapeutic agents targeting a cellular pathway linked to MALAT1. However, this will require further clinical investigation.”

Halting a key protein behind metastasis

Ma’s team observed that MALAT1 sequestered and inactivated a protein known as TEAD, a transcription factor, which when combined with a “co-activator” called YAP, causes cancer proliferation and metastatic progression. The researchers discovered that MALAT1 binds and inactivates TEAD, preventing it from partnering with YAP and targeting genes in promoting metastasis.

Although MALAT1 had been associated with metastasis, the team, using a breast cancer transgenic mouse model, inactivated the MALAT1 gene without altering expression of its adjacent genes and observed that MALAT1 inactivation promoted lung metastasis, which was reversed when MALAT1 was re-introduced.

Similarly, knock out of MALAT1 in human breast cancer cells induced their metastatic ability, which was reversed by the re-introduction of MALAT1. Additionally, overexpression of MALAT1 suppressed breast cancer metastasis in several mouse models.

“Taken together, our study reveals the unexpected function of MALAT1 through comprehensive gene targeting and genetic rescue approaches in multiple in vivo models,” said Ma. “These findings call for a reassessment of ongoing efforts to target MALAT1 as an anti-metastatic therapeutic strategy, and provide a general framework for pursuing a better understanding of lncRNAs.”

—Newswise

Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay