Researchers help unlock the molecular origins of Alzheimer's disease
Virginia Commonwealth University News Sep 20, 2017
The addition of two amino acids to a molecule in the brain has rare, catastrophic results, according to VCU engineering researchers.
A Âtwist of fate that is minuscule even on the molecular level may cause the development of AlzheimerÂs disease, VCU researchers have found.
Observations of molecules called monomers, which are present in the brain, have revealed valuable insights into the diseaseÂs pathway. Monomers resemble a chain in which each of the links is one of 20 amino acids, the building blocks of essential proteins. Problems arise when these monomer chains repeatedly stack on top of one another to form harmful atypical amyloid fibrils, which are long, string-like structures.
Typical amyloid fibrils are made from monomer chains that contain 40 amino acid links, and may have a role in DNA transcription and other cellular processes. A comprehensive look at the brains of familial and senile AlzheimerÂs sufferers shows that monomers with two additional links in the amino acid chain  called Abeta42 monomers  lead to the devastating disease, said Michael Peters, PhD, professor in the Department of Chemical and Life Science Engineering in the School of Engineering.
In cases of familial AlzheimerÂs, mutations in the monomer production pathway leads to the higher number of monomers. It is currently unknown how they develop in brains affected by senile AlzheimerÂs.
Peters said itÂs Âvery bizarre that the addition of these two naturally occurring amino acids to the end of a monomer is so consequential.
ÂWith diseases like cancer you can have one or more mutations or sequence changes along the chain itself, which radically alters the proteinÂs behavior, Peters said, ÂIn the case of AlzheimerÂs, there are no mutations in the monomers. You are simply adding only two natural amino acids to the very end of the non-toxic monomers, which causes a catastrophe.Â
In a healthy brain, amyloid fibrils constructed from normal monomers in a specific sequence stack neatly on top of each other, similar to floors in a building. These fibril stacks weaken as they build and can break down and Âfall over.Â
But this isnÂt the case for fibrils made from Abeta42 monomers, which are much stronger. Instead of breaking, these monomers continue to stack until they form long and resilient fibrils. These fibrils are believed to cause AlzheimerÂs disease because they invade the membranes of neurons, which leads to cell death.
Peters and Oscar Bastidas, PhD, conducted computational analysis to determine why fibrils constructed of Abeta42 monomers are so resilient. They determined the two additional amino acids at the monomer end caused slight rotations of molecules in specific locations within the fibrils. This allowed the monomers to stack slightly closer together, which contributed to resiliency.
ÂItÂs a literal twist of fate, Peters said.
Peters and Bastidas are using this research to develop drugs to disrupt the formation of fibrils constructed from Abeta42 monomers without harming the brain.
ÂWe have to get therapeutic molecules across the rather impervious blood-brain barrier and inhibit fibril formation, while not being toxic to the body or interfering with normal bodily functions, Peters said. ÂThis makes for a very difficult three-fold problem, but we are making progress.Â
Go to Original
A Âtwist of fate that is minuscule even on the molecular level may cause the development of AlzheimerÂs disease, VCU researchers have found.
Observations of molecules called monomers, which are present in the brain, have revealed valuable insights into the diseaseÂs pathway. Monomers resemble a chain in which each of the links is one of 20 amino acids, the building blocks of essential proteins. Problems arise when these monomer chains repeatedly stack on top of one another to form harmful atypical amyloid fibrils, which are long, string-like structures.
Typical amyloid fibrils are made from monomer chains that contain 40 amino acid links, and may have a role in DNA transcription and other cellular processes. A comprehensive look at the brains of familial and senile AlzheimerÂs sufferers shows that monomers with two additional links in the amino acid chain  called Abeta42 monomers  lead to the devastating disease, said Michael Peters, PhD, professor in the Department of Chemical and Life Science Engineering in the School of Engineering.
In cases of familial AlzheimerÂs, mutations in the monomer production pathway leads to the higher number of monomers. It is currently unknown how they develop in brains affected by senile AlzheimerÂs.
Peters said itÂs Âvery bizarre that the addition of these two naturally occurring amino acids to the end of a monomer is so consequential.
ÂWith diseases like cancer you can have one or more mutations or sequence changes along the chain itself, which radically alters the proteinÂs behavior, Peters said, ÂIn the case of AlzheimerÂs, there are no mutations in the monomers. You are simply adding only two natural amino acids to the very end of the non-toxic monomers, which causes a catastrophe.Â
In a healthy brain, amyloid fibrils constructed from normal monomers in a specific sequence stack neatly on top of each other, similar to floors in a building. These fibril stacks weaken as they build and can break down and Âfall over.Â
But this isnÂt the case for fibrils made from Abeta42 monomers, which are much stronger. Instead of breaking, these monomers continue to stack until they form long and resilient fibrils. These fibrils are believed to cause AlzheimerÂs disease because they invade the membranes of neurons, which leads to cell death.
Peters and Oscar Bastidas, PhD, conducted computational analysis to determine why fibrils constructed of Abeta42 monomers are so resilient. They determined the two additional amino acids at the monomer end caused slight rotations of molecules in specific locations within the fibrils. This allowed the monomers to stack slightly closer together, which contributed to resiliency.
ÂItÂs a literal twist of fate, Peters said.
Peters and Bastidas are using this research to develop drugs to disrupt the formation of fibrils constructed from Abeta42 monomers without harming the brain.
ÂWe have to get therapeutic molecules across the rather impervious blood-brain barrier and inhibit fibril formation, while not being toxic to the body or interfering with normal bodily functions, Peters said. ÂThis makes for a very difficult three-fold problem, but we are making progress.Â
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
-
Exclusive Write-ups & Webinars by KOLs
-
Daily Quiz by specialty
-
Paid Market Research Surveys
-
Case discussions, News & Journals' summaries