• Profile
Close

Organ-on-a-chip study reveals mechanism of SARS-CoV-2 invasion into blood vessels

MedicalXpress Breaking News-and-Events Sep 30, 2022

A research group led by CiRA Junior Associate Professor Kazuo Takayama and Associate Professor Yoshiaki Okada of Osaka University has revealed that SARS-CoV-2 disrupts the vascular endothelial barrier by suppressing the expression of Claudin-5 (CLDN5) to invade the blood vessels.

SARS-CoV-2 infects respiratory epithelial cells and then spreads to other organs via blood vessels. In this case, SARS-CoV-2 crosses the walls of blood vessels (the barrier of vascular endothelial cells) from respiratory organs and enters the blood vessels. However, the mechanism was unknown. The research group created an airway-on-a-chip that mimics respiratory organs consisting of airway epithelial cells and vascular endothelial cells. Using the device, they found that SARS-CoV-2 disrupts the vascular endothelial barrier by suppressing the expression of CLDN5, a protein involved in adhesive junctions between vascular endothelial cells, and by subsequently weakening the vascular endothelial cadherin-mediated junctions.

The team confirmed that CLDN5 gene and protein expression levels were decreased in the lungs of a patient with COVID-19. They also demonstrated that increasing CLDN5 expression in vascular endothelial cells by gene transfer or small molecule drugs (fluvastatin) suppressed SARS-CoV-2-induced vascular endothelial barrier disruption.

These results indicate that suppression of CLDN5 expression is an essential mechanism for SARS-CoV-2-induced vascular endothelial barrier disruption, which increases the severity of COVID-19. The findings also indicate that up-regulation of CLDN5 expression is a new therapeutic strategy against COVID-19.

The airway-on-a-chip technology, which can be used to reproduce the respiratory pathology of COVID-19 and search for therapeutic agents, is expected to become an excellent tool for elucidating the pathogenesis of severe respiratory tract infections, including COVID-19, and developing therapeutic drugs in the future.

The results of this study were published online in Science Advances on September 22, 2022.

Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay