• Profile
Close

Newly improved glass slide turns microscopes into thermometers

University at Buffalo Jacobs School of Medicine Aug 02, 2018

Advancement could streamline and boost scientific research all over the world, help computing industry. A study published online in the journal Nature Communications describes how an updated version of this centuries-old tool can now enable scientists to see tiny objects while also measuring their temperature.

The advancement, made possible by a new transparent coating at the forefront of optics theory, has the potential to streamline and enhance scientific research worldwide, from clandestine government biology labs to high school chemistry classes.

It may also have implications in other industries, such as computers and electronics, whose products require measurement and control of heat in highly confined spaces.

“We have instruments that magnify incredibly small objects. And we have tools that measure heat, like infrared thermometers. But we haven’t been able to combine them in a low-cost and reliable manner. This new coating takes a big step in that direction,” said the study’s co-lead author Ruogang Zhao, PhD, assistant professor in the University at Buffalo Department of Biomedical Engineering.

Zhao collaborated with researchers at the University of Pennsylvania, including co-lead author Liang Feng, PhD, assistant professor of materials science and engineering, and electrical and systems engineering. For decades, researchers have tried to combine thermal imaging and microscopy. Images produced from systems that use thermocouples lack resolution and are often too coarse for modern science. Terahertz and infrared thermal mapping techniques interfere with the microscope’s lenses. Other techniques are expensive and time-consuming.

The new coating is made of a layer of acrylic glass (the same material used in most eyeglasses) that’s sandwiched between two layers of transparent gold. The gold is transparent because it’s only 20 nanometers thick; a typical sheet of paper is 100,000 nanometers thick.

Engineers fabricated the coating so that “exceptional points”—the sweet spots where unusual light behavior happens—can develop within the tri-layered structure. The coating, which significantly enhances the slide’s sensitivity to light detection, would be added to slides during the manufacturing process. Either the slide or cover slip could receive the coating. To make use of the new coating, a laser is needed.

Common slides, which are often bought in bulk, typically cost around 5 cents. The new coating would likely add a few pennies to the cost, Zhao said.

The research is supported by funding from the National Science Foundation and the National Institutes of Health.

Go to Original
Only Doctors with an M3 India account can read this article. Sign up for free or login with your existing account.
4 reasons why Doctors love M3 India
  • Exclusive Write-ups & Webinars by KOLs

  • Nonloggedininfinity icon
    Daily Quiz by specialty
  • Nonloggedinlock icon
    Paid Market Research Surveys
  • Case discussions, News & Journals' summaries
Sign-up / Log In
x
M3 app logo
Choose easy access to M3 India from your mobile!


M3 instruc arrow
Add M3 India to your Home screen
Tap  Chrome menu  and select "Add to Home screen" to pin the M3 India App to your Home screen
Okay